Programming-Idioms

# 74
Implementation
VB

Be concise.

Be useful.

All contributions dictatorially edited by webmasters to match personal tastes.

Please try to avoid dependencies to third-party libraries and frameworks.

Implementation edit is for fixing errors and enhancing with metadata.

Instead of changing the code of the snippet, consider creating another VB implementation.

Other implementations
import "math/big"
x.GCD(nil, nil, a, b)
from fractions import gcd
x = gcd(a, b)
extern crate num;

use num::Integer;
use num::bigint::BigInt;
let x = a.gcd(&b);
function GCD(a,b:int64):int64;

var t:int64;

begin
while b <> 0 do
begin
t := b;
b := a mod b;
a := t;
end;
result := a;
end;
int gcd(int a, int b) {
while (b != 0) {
var t = b;
b = a % t;
a = t;
}
return a;
}
import std.numeric: gcd;
x = gcd(a, b);
import std.bigint;
BigInt gcd(in BigInt x, in BigInt y) pure {
if (y == 0)
return x;
return gcd(y, x%y);
}

gcd(a, b);
x = a.gcd(b)
defmodule Gcd do
def gcd(x, 0), do: x
def gcd(x, y), do: gcd(y, rem(x,y))
end

x = Gcd.gcd(a, b)
x = gcd a b
import java.math.BigInteger;
BigInteger x = a.gcd(b);
extension=gmp
\$x = gmp_gcd(\$a, \$b);
const gcd = (a, b) => b === 0 ? a : gcd (b, a % b)
(defn gcd [a b]
(if (zero? b)
a
(recur b (mod a b))))
use bigint;
sub gcd {
my (\$A, \$B) = @_;
return 0 == \$B
? \$A
: gcd(\$B, \$A % \$B);
}
#include <gmp.h>
mpz_t _a, _b, _x;
mpz_init_set_str(_a, "123456789", 10);
mpz_init_set_str(_b, "987654321", 10);
mpz_init(_x);

mpz_gcd(_x, _a, _b);
gmp_printf("%Zd\n", _x);
unsigned long long int GCD(unsigned long long int a, unsigned long long int b)
{
unsigned long long int c=a%b;
if(c==0)
return b;
return GCD(b, c);
}
int gcd(int a, int b)
{
while (b != 0)
{
int t = b;
b = a % t;
a = t;
}
return a;
}
int gcd(int a, int b)
{
if (b == 0)
return a;
else
return gcd(b, a % b);
}
use,intrinsic : iso_fortran_env, only : int64
implicit none
integer(kind=int64),intent(in)  :: m, n
ifirst=iabs(m)
else
do
if(irest == 0)  exit
enddo
endif
end function gcd
function gcd(a, b)
if (b ~= 0) then
return a
else
return gcd(y, x%y)
end
end
gcd a b
|   a==b =a
|   a>b = gcd(a-b) b
|   otherwise = gcd a (b-a)
#include <numeric>
auto x = std::gcd(a, b);