# Programming-Idioms

# 75
Implementation
Perl

Be concise.

Be useful.

All contributions dictatorially edited by webmasters to match personal tastes.

Please try to avoid dependencies to third-party libraries and frameworks.

Implementation edit is for fixing errors and enhancing with metadata.

Instead of changing the code of the snippet, consider creating another Perl implementation.

Other implementations
`import "math/big"`
```gcd.GCD(nil, nil, a, b)
x.Div(a, gcd).Mul(x, b)```
`from fractions import gcd`
`x = (a*b)//gcd(a, b)`
```extern crate num;

use num::Integer;
use num::bigint::BigInt;```
`let x = a.lcm(&b);`
```x = lcm(a, b);

int lcm(int a, int b) => (a * b) ~/ gcd(a, b);

int gcd(int a, int b) {
while (b != 0) {
var t = b;
b = a % t;
a = t;
}
return a;
}```
`x = a.lcm(b)`
```defmodule BasicMath do
def gcd(a, 0), do: a
def gcd(0, b), do: b
def gcd(a, b), do: gcd(b, rem(a,b))

def lcm(0, 0), do: 0
def lcm(a, b), do: (a*b)/gcd(a,b)
end```
```x = lcm a b
```
`import std.numeric: gcd`
`uint x = (a * b) / gcd(a, b);`
```gcd(A,B) when A == 0; B == 0 -> 0;
gcd(A,B) when A == B -> A;
gcd(A,B) when A > B -> gcd(A-B, B);
gcd(A,B) -> gcd(A, B-A).

lcm(A,B) -> (A*B) div gcd(A, B).```
```const gcd = (a, b) => b === 0 ? a : gcd (b, a % b)
let x = (a * b) / gcd(a, b)```
`(setf x (lcm a b))`
```sub lcm {
use integer;
my (\$x, \$y) = @_;
my (\$f, \$s) = @_;
while (\$f != \$s) {
(\$f, \$s, \$x, \$y) = (\$s, \$f, \$y, \$x) if \$f > \$s;
\$f = \$s / \$x * \$x;
\$f += \$x if \$f < \$s;
}
\$f
}```
`#include <gmp.h>`
```mpz_t _a, _b, _x;
mpz_init_set_str(_a, "123456789", 10);
mpz_init_set_str(_b, "987654321", 10);
mpz_init(_x);

mpz_lcm(_x, _a, _b);
gmp_printf("%Zd\n", _x);```
`extension=gmp`
```\$gcd = gmp_lcm(\$a, \$b);
echo gmp_strval(\$gcd);```
`#include <numeric>`
`auto x = std::lcm(a, b);`
```int gcd(int a, int b)
{
while (b != 0)
{
int t = b;
b = a % t;
a = t;
}
return a;
}

int lcm(int a, int b)
{
if (a == 0 || b == 0)
return 0;
return (a * b) / gcd(a, b);
}

int x = lcm(140, 72);```
`import java.math.BigInteger;`
```BigInteger a = new BigInteger("123456789");
BigInteger b = new BigInteger("987654321");
BigInteger x = a.multiply(b).divide(a.gcd(b));```