Logo

Programming-Idioms

Define a type vector containing three floating point numbers x, y, and z. Write a user-defined operator x that calculates the cross product of two vectors a and b.
New implementation

Be concise.

Be useful.

All contributions dictatorially edited by webmasters to match personal tastes.

Please do not paste any copyright violating material.

Please try to avoid dependencies to third-party libraries and frameworks.

Other implementations
record Vector(double X, double Y, double Z)
{
    public static Vector operator *(Vector a, Vector b)
    {
        return new(
            a.Y*b.Z - a.Z*b.Y,
            a.Z*b.X - a.X*b.Z,
            a.X*b.Y - a.Y*b.X
        );
    }
}
class Vector {
  final double x, y, z;

  Vector(this.x, this.y, this.z);

  Vector operator *(other) {
    return Vector(y * other.z - z * other.y, 
                  z * other.x - x * other.z,
                  x * other.y - y * other.x);
  }
}
module vect
  private
  type, public:: vector
     real :: x,y,z
  end type vector
  public:: operator(.x.)
  interface operator(.x.)
     procedure vector_cross
  end interface operator(.x.)
contains
  function vector_cross(a,b) result(c)
    type(vector), intent(in) :: a,b
    type(vector) :: c
    c%x = a%y*b%z - a%z*b%y
    c%y = a%z*b%x - a%x*b%z
    c%z = a%x*b%y - a%y*b%x
  end function vector_cross
end module vect
data Vector a = Vector a a a

infixl 7 ×
(×) :: Num a => Vector a -> Vector a -> Vector a
Vector x1 y1 z1 × Vector x2 y2 z2 = Vector (y1 * z2 - z1 * y2) (z1 * x2 - x1 * z2) (x1 * y2 - y1 * x2)
data Vector a = Vector a a a

infixl 7 `x`
x :: Num a => Vector a -> Vector a -> Vector a
Vector x1 y1 z1 `x` Vector x2 y2 z2 = Vector (y1 * z2 - z1 * y2) (z1 * x2 - x1 * z2) (x1 * y2 - y1 * x2)
use Object::Pad;
class Vector {
    has $x :accessor;
    has $y :accessor;
    has $z :accessor;

    BUILD { ($x, $y, $z) = @_ }

    use overload 'x' => sub { shift->xprod(shift) };

    method xprod ($v) {
        return Vector->new(
            $self->y * $v->z - $self->z * $v->y,
            $self->z * $v->x - $self->x * $v->z,
            $self->x * $v->y - $self->y * $v->x,
        );
    }
}

my $a = Vector->new(3, 4, 5);
my $b = Vector->new(5, 10, 1);
my $cross = $a x $b;
package Vector {
    sub new {
        my ($class, $x, $y, $z) = @_;
        bless [$x,$y,$z], $class;
    }
    sub x { shift->[0] };
    sub y { shift->[1] };
    sub z { shift->[2] };
    
    use overload 'x' => sub { shift->xprod(shift) };

    sub xprod {
        my ($self,$v) = @_;
        return Vector->new(
            $self->y * $v->z - $self->z * $v->y,
            $self->z * $v->x - $self->x * $v->z,
            $self->x * $v->y - $self->y * $v->x,
        );
    }
}
class Vector:
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z
        return

    def __mul__(self, other):
        return Vector(self.y * other.z - self.z * other.y,
                      self.z * other.x - self.x * other.z,
                      self.x * other.y - self.y * other.x)

result = a * b
Vector = Struct.new(:x, :y, :z) do
  def * (other)
    Vector.new(
      y*other.z - z*other.y,
      z*other.x - x*other.z,
      x*other.y - y*other.x)
  end
end
use std::ops::Mul;
struct Vector {
    x: f32,
    y: f32,
    z: f32,
}

impl Mul for Vector {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self {
        Self {
            x: self.y * rhs.z - self.z * rhs.y,
            y: self.z * rhs.x - self.x * rhs.z,
            z: self.x * rhs.y - self.y * rhs.x,
        }
    }
}
Structure Vector
    Public X, Y, Z As Double

    Shared Operator *(a As Vector, b As Vector) As Vector
        Return New Vector() With {
            .X = a.Y*b.Z - a.Z*b.Y,
            .Y = a.Z*b.X - a.X*b.Z,
            .Z = a.X*b.Y - a.Y*b.X
        }
    End Operator
End Structure