This language bar is your friend. Select your favorite languages!

Idiom #20 Return two values

Implement a function search which looks for item x in a 2D matrix m.
Return indices i, j of the matching cell.
Think of the most idiomatic way in the language to return the two values at the same time.

import std.typecons;
auto search(int[][] m, int x)
{
	foreach (i, row; m)
	{
		foreach (j, cell; row)
		{
			if (cell == x)
				return tuple(i, j);
		}
	}
}
type Matrix is array (Positive range <>, Positive range <>) of Integer;

function Search (M : Matrix; X : Integer; I, J : out Integer) return Boolean is
begin
   for K in M'Range (1) loop
      for L in M'Range (2) loop
         if M (K, L) = X then
            I := K;
            J := L;
            return True;
         end if;    
      end loop;
   end loop;

   return False;
end Search;
#include <string.h>
void search(void ***m,void *x,size_t memb_size,int len_x,int len_y,int *i,int *j)
{
	for(*i=0;*i<len_x;*i+=1)
	{
		for(*j=0;*j<len_y;*j+=1)
		{
			if(!memcmp(m[*i][*j],x,memb_size))
			{
				return;
			}
		}
	}
	*i=*j=-1;
}
module Arr = Bigarray.Array2

let search array value =
	let x_max = Arr.dim1 array in
	let y_max = Arr.dim2 array in
	let rec loop x y = 
		(* End of array *)
		if x = x_max then
			raise Not_found
		(* End of row, go to next *)
		else if y = y_max then
			loop (x+1) 0
		else 
			(* If found, return it *)
			if array.{x,y} = value then
				(x,y)
			(* Otherwise go to next col *)
			else
				loop x (y+1)
	in
	loop 0 0





		
  (defn find-in-2d-matrix [m x]
    (for [i (range (count m))
          j (range (count (first m)))
          :when (= x (-> m (nth i) (nth j)))]
      [i j]))
bool _search(const Matrix& _m, const float _x, size_t* const out_i, size_t* const out_j) {
  for (size_t j = 0; j < _m.rows; j++) {
    for (size_t i = 0; i < _m.cols; i++) {
      if (_m.at(i, j) == _x) {
         *out_i = i;
         *out_j = j;
         return true;
      }
    }
  }
  return false;
}
#include <utility>
template<typename T, size_t len_x, size_t len_y>
std::pair<size_t, size_t> search (const T (&m)[len_x][len_y], const T &x) {
    for(size_t pos_x = 0; pos_x < len_x; ++pos_x) {
        for(size_t pos_y = 0; pos_y < len_y; ++pos_y) {
            if(m[pos_x][pos_y] == x) {
                return std::pair<size_t, size_t>(pos_x, pos_y);
            }
        }
    }

    // return an invalid value if not found
    return std::pair<size_t, size_t>(len_x, len_y);
}
(int, int) Search(int[,] m, int x)
{
    for (var i = 0; i <= m.GetUpperBound(0); i++)
        for (var j = 0; j <= m.GetUpperBound(1); j++)
            if (m[i, j] == x)
                return (i, j);

    return (-1, -1);
}
class Position {
  int i, j;
  Position(this.i, this.j);
}
Position search(List<List> m, x) {
  for (var i = 0; i < m.length; i++) {
    var line = m[i];
    for (var j = 0; j < line.length; j++) {
      if (line[j] == x) {
        return new Position(i, j);
      }
    }
  }
  return null;
}
-spec search(T, [[T]]) -> {pos_integer(), pos_integer()}.
search(X, M) -> search(X, M, 1).

search(_, [], _) -> throw(notfound);
search(X, [R|Rs], RN) ->
  case search_row(X, R) of
    notfound -> search(X, Rs, RN+1);
    CN -> {RN, CN}
  end.

search_row(X, Row) -> search_row(X, Row, 1).

search_row(_, [], _) -> notfound;
search_row(X, [X|_], CN) -> CN;
search_row(X, [_|Elems], CN) -> search_row(X, Elems, CN+1).
function search(m,x)
  integer, dimension(:,:), intent(in) :: m
  integer, intent(in) :: x
  integer, dimension(2) :: search
  search = findloc(x,m)
end function search
func search(m [][]int, x int) (bool, int, int) {
	for i := range m {
		for j, v := range m[i] {
			if v == x {
				return true, i, j
			}
		}
	}
	return false, 0, 0
}
search x m = head [ (i, j) | (i, r) <- zip [0..] m,
                             (j, c) <- zip [0..] r, c == x]


function search(m, x) {
    for (var i = 0; i < m.length; i++) {
        for (var j = 0; j < m[i].length; j++) {
            if (m[i][j] == x) {
                return [i, j];
            }
        }
    }
    return false;
}
static class Position{
	int i;
	int j;
}

Position search(int[][] m, int x){
	for(int i=0;i<m.length;i++)
		for(int j=0;j<m[i].length;j++)
			if(m[i][j] == x){
				Position pos= new Position();
				pos.i = i;
				pos.j = j;
				return pos;
			}
	return null;
}
(defun mysearch (x m)
  (loop for i below (array-dimension m 0)
        do (loop for j below (array-dimension m 1)
                 when (eql x (aref m i j))
                 do (return-from my-search
                                 (values i j)))))
function search(m, x)
   for i,v1 in ipairs(m) do
      for j,v2 in ipairs(v1) do
         if v2 == x then return i,j end
      end
   end
end
function search($x, array $m): ?array
{
    for ($j = 0; $j < count($m); $j++) {
        if (($i = array_search($x, $m[$j])) !== false) {
            return [$i, $j];
        }
    }

    return null;
}
procedure search(m:T2dMatrix; x:TElement; out i,j:integer);
begin
   for i := 0 to high(m) do
	for j := 0 to high(m[i]) do
            if m[i,j] = x then
               exit;
   i := -1;
   j := -1;
end;
sub search {
   my ($x, $m) = @_;
   while ( ($k1,$v1) = each @$m ) {
      while ( ($k2, $v2) = each @$v1 ) {
           return $k1, $k2 if $v2 == $x;
      }
   }
}
def search(m, x):
    for idx, item in enumerate(m):
        if x in item:
            return idx, item.index(x)
def search(m, x)
  m.each_with_index do |row, i|
    row.each_with_index do |value, j|
      return i, j if value == x
    end
  end
  nil
end
fn search<T: Eq>(m: &Vec<Vec<T>>, x: &T) -> Option<(usize, usize)> {
    for (i, row) in m.iter().enumerate() {
        for (j, column) in row.iter().enumerate() {
            if *column == *x {
                return Some((i, j));
            }
        }
    }

    None
}
def search[T](m: Iterable[Iterable[T]], x: T): Option[(Int, Int)] = {
  for ((row, i) <- m.view.zipWithIndex; (column, j) <- row.view.zipWithIndex if column == x)
    return Some((i, j))
  None
}

Do you know the best way to do this in your language ?
New implementation...

Idiom created by

programming-idioms.org

Related idioms